3.19 \(\int \frac {\sinh ^{-1}(a x)^2}{x^3} \, dx\)

Optimal. Leaf size=43 \[ -\frac {a \sqrt {a^2 x^2+1} \sinh ^{-1}(a x)}{x}+a^2 \log (x)-\frac {\sinh ^{-1}(a x)^2}{2 x^2} \]

[Out]

-1/2*arcsinh(a*x)^2/x^2+a^2*ln(x)-a*arcsinh(a*x)*(a^2*x^2+1)^(1/2)/x

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 43, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.300, Rules used = {5661, 5723, 29} \[ -\frac {a \sqrt {a^2 x^2+1} \sinh ^{-1}(a x)}{x}+a^2 \log (x)-\frac {\sinh ^{-1}(a x)^2}{2 x^2} \]

Antiderivative was successfully verified.

[In]

Int[ArcSinh[a*x]^2/x^3,x]

[Out]

-((a*Sqrt[1 + a^2*x^2]*ArcSinh[a*x])/x) - ArcSinh[a*x]^2/(2*x^2) + a^2*Log[x]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 5661

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcS
inh[c*x])^n)/(d*(m + 1)), x] - Dist[(b*c*n)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcSinh[c*x])^(n - 1))/Sqrt
[1 + c^2*x^2], x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[n, 0] && NeQ[m, -1]

Rule 5723

Int[((a_.) + ArcSinh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_)*((d_) + (e_.)*(x_)^2)^(p_), x_Symbol] :> Simp[
((f*x)^(m + 1)*(d + e*x^2)^(p + 1)*(a + b*ArcSinh[c*x])^n)/(d*f*(m + 1)), x] - Dist[(b*c*n*d^IntPart[p]*(d + e
*x^2)^FracPart[p])/(f*(m + 1)*(1 + c^2*x^2)^FracPart[p]), Int[(f*x)^(m + 1)*(1 + c^2*x^2)^(p + 1/2)*(a + b*Arc
Sinh[c*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d, e, f, m, p}, x] && EqQ[e, c^2*d] && GtQ[n, 0] && EqQ[m + 2*p
+ 3, 0] && NeQ[m, -1]

Rubi steps

\begin {align*} \int \frac {\sinh ^{-1}(a x)^2}{x^3} \, dx &=-\frac {\sinh ^{-1}(a x)^2}{2 x^2}+a \int \frac {\sinh ^{-1}(a x)}{x^2 \sqrt {1+a^2 x^2}} \, dx\\ &=-\frac {a \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)}{x}-\frac {\sinh ^{-1}(a x)^2}{2 x^2}+a^2 \int \frac {1}{x} \, dx\\ &=-\frac {a \sqrt {1+a^2 x^2} \sinh ^{-1}(a x)}{x}-\frac {\sinh ^{-1}(a x)^2}{2 x^2}+a^2 \log (x)\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.03, size = 43, normalized size = 1.00 \[ -\frac {a \sqrt {a^2 x^2+1} \sinh ^{-1}(a x)}{x}+a^2 \log (x)-\frac {\sinh ^{-1}(a x)^2}{2 x^2} \]

Antiderivative was successfully verified.

[In]

Integrate[ArcSinh[a*x]^2/x^3,x]

[Out]

-((a*Sqrt[1 + a^2*x^2]*ArcSinh[a*x])/x) - ArcSinh[a*x]^2/(2*x^2) + a^2*Log[x]

________________________________________________________________________________________

fricas [A]  time = 0.42, size = 67, normalized size = 1.56 \[ \frac {2 \, a^{2} x^{2} \log \relax (x) - 2 \, \sqrt {a^{2} x^{2} + 1} a x \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right ) - \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right )^{2}}{2 \, x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsinh(a*x)^2/x^3,x, algorithm="fricas")

[Out]

1/2*(2*a^2*x^2*log(x) - 2*sqrt(a^2*x^2 + 1)*a*x*log(a*x + sqrt(a^2*x^2 + 1)) - log(a*x + sqrt(a^2*x^2 + 1))^2)
/x^2

________________________________________________________________________________________

giac [B]  time = 0.17, size = 98, normalized size = 2.28 \[ -{\left (a \log \left (-x {\left | a \right |} + \sqrt {a^{2} x^{2} + 1}\right ) - a \log \left ({\left | x \right |}\right ) - \frac {2 \, {\left | a \right |} \log \left (a x + \sqrt {a^{2} x^{2} + 1}\right )}{{\left (x {\left | a \right |} - \sqrt {a^{2} x^{2} + 1}\right )}^{2} - 1}\right )} a - \frac {\log \left (a x + \sqrt {a^{2} x^{2} + 1}\right )^{2}}{2 \, x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsinh(a*x)^2/x^3,x, algorithm="giac")

[Out]

-(a*log(-x*abs(a) + sqrt(a^2*x^2 + 1)) - a*log(abs(x)) - 2*abs(a)*log(a*x + sqrt(a^2*x^2 + 1))/((x*abs(a) - sq
rt(a^2*x^2 + 1))^2 - 1))*a - 1/2*log(a*x + sqrt(a^2*x^2 + 1))^2/x^2

________________________________________________________________________________________

maple [A]  time = 0.36, size = 67, normalized size = 1.56 \[ -a^{2} \arcsinh \left (a x \right )-\frac {a \arcsinh \left (a x \right ) \sqrt {a^{2} x^{2}+1}}{x}-\frac {\arcsinh \left (a x \right )^{2}}{2 x^{2}}+a^{2} \ln \left (\left (a x +\sqrt {a^{2} x^{2}+1}\right )^{2}-1\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(arcsinh(a*x)^2/x^3,x)

[Out]

-a^2*arcsinh(a*x)-a*arcsinh(a*x)*(a^2*x^2+1)^(1/2)/x-1/2*arcsinh(a*x)^2/x^2+a^2*ln((a*x+(a^2*x^2+1)^(1/2))^2-1
)

________________________________________________________________________________________

maxima [A]  time = 0.31, size = 39, normalized size = 0.91 \[ a^{2} \log \relax (x) - \frac {\sqrt {a^{2} x^{2} + 1} a \operatorname {arsinh}\left (a x\right )}{x} - \frac {\operatorname {arsinh}\left (a x\right )^{2}}{2 \, x^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(arcsinh(a*x)^2/x^3,x, algorithm="maxima")

[Out]

a^2*log(x) - sqrt(a^2*x^2 + 1)*a*arcsinh(a*x)/x - 1/2*arcsinh(a*x)^2/x^2

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {{\mathrm {asinh}\left (a\,x\right )}^2}{x^3} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(asinh(a*x)^2/x^3,x)

[Out]

int(asinh(a*x)^2/x^3, x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\operatorname {asinh}^{2}{\left (a x \right )}}{x^{3}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(asinh(a*x)**2/x**3,x)

[Out]

Integral(asinh(a*x)**2/x**3, x)

________________________________________________________________________________________